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Abstract-The micromorphic stress fields in the near-tip region of a Mode-! semi-infinite crack
embedded in an infinite elastic bimaterial layered system are investigated. The local and global
features of the micromorphic stresses in the heterogeneous near-tip domain are captured through
an approximate analytical model vis-ii-vis a two-dimensional plane strain finite element model. The
studies are carried out within a heterogeneous cut-out region surrounding the physical crack-tip
wherein alternating matrix and fiber layers are positioned perpendicular to the crack plane. The
approximate analytical model is developed by postulating a general form of displacement field that is
obtained by the superposition of the applied homogenized near-tip field and a family of kinematically
admissible unit-cell micro-displacements. While preserving the aggregate response of the material,
these micro-displacements take into account the effects of material micro-structure. The results
indicate that the microstress field in the immediate vicinity of the crack-tip exhibits an r- 1i2 singularity
when the crack-tip is located entirely within the matrix phase and lies sufficiently away from the
adjacent interfaces. The structure of the stress field in the matrix region surrounding the crack-tip
corresponds to the universal isotropic field dominated by the tip stress intensity factor. In the far
field region (radial distance greater than one unit-cell thickness), the continuous stress components
(1n and (1 n are found to be dominated by the orthotropic stress intensity factor and found to be in
good agreement with their homogeneous orthotropic counterparts. As expected, the discontinuous
stress component (1yy is found to exhibit strong dependency on the material heterogeneity. While (1n

is dominated by the applied orthotropic stress intensity factor, it is described by a discontinuous
spatial eigen-function which has been obtained with the aid of the analytical approximate model.
Several parameter studies are presented and implications on the mode-I brittle fracture in layered
systems are discussed. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

In recent years, layered composites have received increasing attention due to their poten
tially superior directional stiffness, strength and toughness properties. Ceramic and metal
matrix layered systems are primarily considered for high temperature applications whereas
unidirectionally fiber reinforced laminates are often used by the aerospace, automotive and
durable goods industries mainly due to their superior mechanical properties. In addition to
the above applications, layered morphologies are also used in component joining and
protective coating systems, electronic structures such as multi-layer capacitors and micro
chip applications, and in advanced fiber optics for telecommunications and information
technology. While exhibiting desirable mechanical characteristics, layered monolithic and
fiber reinforced composite laminates may also exhibit rather complex life-limiting failures.
Several types of failures associated with multilayered systems have been observed and
reported in the literature. The prominent modes of failure in layered systems include mixed
mode delamination, transverse cracking oflow strength layers, thin film decohesion, spalling
and blistering of thin films, crack tunneling and film or substrate cracking. In periodically
layered materials, a planar crack, under cyclic and/or environmental loadings, may propa
gate sub-critically through several layers forming a macroscopically well defined crack
under mode-I loading. In brittle/ductile layered systems, mode-I cracks may propagate
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perpendicular to the layers in the brittle phase while bridged by the ductile layers. The
crack propagation in these systems is often achieved through renucleation of cracks in the
brittle layers ahead of the crack-tip while the metal layers in the crack wake undergo plastic
yielding and potentially experience debonding and separation from the adjacent brittle
matrix [Dalgleish et al. (1989), Cao and Evans (1991), Deve and Maloney (1991)].

For a crack approaching a bimaterial interface at a 90-degree angle, Suresh et al.
(1992) showed experimentally and Sugimura et al. (1995) showed analytically that for
brittle systems, the near-tip crack driving force or the elastic energy release rate, depends
strongly on the stiffness of the layer ahead of the crack tip relative to the stiffness of the
layer containing the crack-tip. Several studies [He and Hutchinson (1989), Martinez and
Gupta (1993), Tullock et al. (1994)] have shown that the competition between crack
deflection and penetration at the interface and subsequent evolution of fracture strongly
depends on the properties of the constituent layers, the properties of the interface and the
mechanics dominating the near-tip region.

The problem of a planar crack terminating perpendicular to the interface between two
isotropic half planes was studied by Zak and Williams (1963), Swenson and Rau (1970),
Erdogan and Biricikoglu (1973), and Cook and Erdogan (1972). The near-tip mechanics
of a crack terminating at the interface between two elastic anisotropic half planes were
studied by Gupta et al. (1992), Ting and Hoang (1984) and Erdogan (1972). Finite geometry
effects for isotropic bimaterials containing cracks of various configurations were addressed
by Lu and Erdogan (1983) and by Ballarini and Luo (1991). A comprehensive survey of
solutions for mixed-mode cracking in layered systems has been reported by Hutchinson
and Suo (1992). Zak and Williams (1963) showed that for cracks terminating at bimaterial
interfaces the power of the singularity dominating the near-tip stress fields has the form r- Y

with y #- ~ and 0 < Y < 1 which hinders the direct use of a critical energy release rate
criterion in assessing initiation of crack growth. However, Delale and Erdogan (1988) and
Erdogan et al. (1991) showed that the deviation from the r- 12 singularity can be overcome
by introducing gradient material properties within a small interface region. Compared to
the large volume of research in characterizing the near-tip fields and fracture of two
layer systems, relatively limited research has been reported for the analytically intractable
problem of periodically layered systems containing cracks perpendicular to the layers.
Recently, Ballarini et al. (1995) and Fish et al. (1993) presented results from numerical
studies on the near-tip mechanics of mode- I cracking in periodically layered bimaterial
systems.

Motivated by the immense practical applications of layered systems, this work is
devoted to the development of an approximate analytical model aimed at capturing with
sufficient accuracy the local and global features of the near-tip fields for cracks embedded
at 90-degree to the interfaces in periodically layered systems. The model predictions are
compared with refined finite element solutions obtained by solving the related boundary
value problem involving a heterogeneous near-tip region cut-out from the periodically
layered system. The formulation of the problem is presented in Section 2. The development
of the analytical model is fully described in Section 3 and the related finite element model
is presented in Section 4. The results from the analytical model and finite element analyses
are reported in Section 5 and discussed in Section 6 which also includes parametric studies
and implications on brittle fracture of the layered systems under consideration. The paper
concludes in Section 7 with a summary of the salient findings of this work.

2. STATEMENT OF THE PROBLEM

The problem addressed in this work is shown in Fig. 1, where a semi-infinite crack
embedded in an otherwise infinite perfectly bonded bimaterial layered system is shown.
The bimateriallayered system is comprised of alternating matrix and fiber layers positioned
perpendicular to the crack plane. This layered morphology may be used to represent either
a fiber reinforced [0/90] cross-ply laminate or a bimaterial periodically layered system. In
this study, the materials for the two phases were taken to be homogeneous and linearly
elastic. The thicknesses of the matrix and the fiber phases are taken to be 1m and It,
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Fig. I. A semi-infinite crack in an infinite periodically layered bimaterial system.

respectively, while I = 1m + If represents the thickness ofa fiber/matrix unit-cell. The cartesian
coordinate system is chosen with its origin located at the crack-tip as shown in Fig. 1. The
loading is assumed such that overall mode-I conditions prevail. The crack surfaces are
traction free and the crack-tip is assumed to be ideally sharp. Plane strain conditions are
considered. For the approximate analytical model, the crack-tip is assumed to be in the
matrix phase at mid-distance between the adjacent fiber layers. In formulating the near-tip
finite element model, a cut-out region surrounding the physical crack-tip as indicated by
the dashed lines will be considered.

3 ANALYTICAL MODEL

The model is based on the non-standard analysis approach of Wozniak (1987) for
problems with periodic material structure, wherein the displacements are postulated in terms
of the homogenized orthotropic displacements augmented by a family of kinematically
admissible unit-cell local displacements. Here it is emphasized that the effects of the geo
metrically non-periodic macrocrack enter into the solution through the homogenized
asymptotic fields. As such, the fundamental assumptions used by Wozniak (1987) in
formulating the non-standard analysis for micro-periodic material structure are valid. In
this approach, the local displacements are cast in terms of a unit-cell shape function which
is known a priori and some unknown micromorphic parameter functions which depend on
the degree of material heterogeneity and the lamination morphology via the layer volume
fractions. While the micromorphic parameters describe quantitatively the effects of the
micro-periodic material structure, the shape function describes the expected qualitative
character of these effects. The unknown micromorphic parameters are obtained by invoking
an energy minimization technique. The homogeneous domain solution is then obtained
by solving the Navier displacement field equations subjected to homogenized boundary
conditions.

3.1. Deformation hypothesis
Assuming that the global mechanical response of the layered system conforms to that of

the homogenized orthotropic linear elastic model, the displacement field can be postulated in
terms of the applied homogenized near-tip displacement field augmented by kinematically
admissible unit-cell local displacements [see, for example, Wozniak (1987), Matysiak and
Wozniak (1987) and Kaczynski and Matysiak (1989)]. As such, under plane strain
conditions, the actual displacement vector u = {u, v} T can be approximated as the sum of
the macro-displacements ii = {ii, v} T and the local displacements ul = {ul

, Vi} T as follows:

u(x,y) = u(x,y) +d(x,y),

v(x,y) = v(x,y)+d(x,y). (1)
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While ii preserves the aggregate orthotropic response, u' = {u', Vi} T takes into account the
effects of micro-periodic material structure. The micro-displacements can be expressed in
terms of a unit-cell shape function hex) and the micromorphic parameter functions 9lx,Y)
(i = 1,2) as follows:

u'(x,y) = 91 (x,y)h(x),

v'(x,y) = 92(X,y)h(x). (2)

The shape function hex) is an a priori known I-periodic function which satisfies the following
periodicity and local equilibrium conditions:

h(x) = h(x+/),

f
X+1

x h(x) dx = O. (3)

The unknown functions 9,(X, y) are called the micromorphic parameters and they are
assumed to be smooth functions of x and y.

Any function satisfying eqn (3) can be taken as a candidate for the shape function and
a homogenized model associated with the selected shape function can be obtained. This
situation is analogous to that of the finite element method, where also we deal with different
choices of the shape functions. The choice of a particular shape function may then be made
based on the simplicity and accuracy of the homogenized model. In this study, several
shape functions were tested and it was found that the linear shape function gave the most
consistent and accurate results. A sectionally linear shape function for the bilayer periodic
laminated composite is shown in Fig. 2. This shape function can be expressed as:

hex) =

1
1 6

-:-(x. -Xm).-.I1 m

1 6
- -(x-x,)

VI I

(4)

where Vm = 1m!I, VI = II! I and I = 1m + II' Obviously, Vm and VI represent the volume fractions
of the matrix and the fiber layers respectively. As will be shown later in this work, the
governing equations and ensuing homogenized material constants are independent of the
amplitude 6 of the shape function. As such, the value of 6 is chosen to be the matrix layer
thickness in the present study.

For the postulated plane deformation field (1), the linearized strain---displacement
relations take the following form:
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(5)

It is worth mentioning here that in the above equations the shape function hex) and its
derivative are evaluated locally within the appropriate unit-cell consistent with the coor
dinate x (see Fig. 2).

3.2. Governing equations
The generalized stress-strain relations for a linear elastic material are given by

(6)

where i, j = 1, 2, ... , 6 and summation from 1 to 6 is implied over the repeated index j.
The above equations are derived using contracted notation such that {B i } =

[BxX' e,y, B=z, tV" Yzx' Yxyf, {oJ = [0"xx, O"yy, 0"zz, 0"=.n 0"=.<, O"Xy)T and [Cii) is the six-by-six symmetric
elastic stiffness matrix.

The strain energy density ¢ for a linear elastic body under plane conditions is given
by:

i,j = 1,2,6 (7)

where summation is implied over the repeated indices. The average energy density in the
unit-cell of a layered system can be defined as:

1 fX+'¢ = I x ¢dx. (8)

For an integrable real valued I-periodic function <p, i.e., <p(x) = <p(x+ I), X E R we define the
following auxiliary average values:

1 fX+1
<<p) = I x <pdx

1 fX+1
<<P)I = I x <ph'(x)dx

1 fX+1
<<P)II = I x <ph'(x)h'(x) dx (9)

where h'(x) = ohjox. With the aid of eqns (5) and (7), the average energy density for a
layered system can be obtained in terms of the macro-strains Bio the micromorphic functions
glx, y) and the averaged elastic properties of the stratified medium. More specifically,
for a layered system comprised of either homogeneous orthotropic or isotropic layers
(C16 = C26 = 0), the linearized average energy density is given by:

¢ = ~ [<CII )£1 £1 + 2<C12 )£1 £2 + <Cn )£2£2 + <C66 )£6£6)

+ [<Cli )181g l + <CI2)182g 1+<C66 )186g 2)+~ [<CII )Ilglgl +<C66)llg2g2) (10)

where the averaging notation introduced in eqn (9) is used to denote various averaged
elastic constants. For the bilayer unit-cell shown in Fig. 2, the auxiliary averaged elastic
constants are given by :
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(11 )

where the superscripts m and f stand for the matrix and the fiber layers, respectively.
Assuming that the equivalent homogenized orthotropic medium is hyperelastic, eqn (10)
can be used to obtain the stress-strain relations for the effective medium as follows:

_ o<F
(J. =.-

'I OS'I
(12)

where aij and Bij are the homogeneous orthotropic macro-stress and macro-strain
components.

The governing equations for the macro-displacements u and v as well as the mic
romorphic functions 9lx,y) can be obtained through local stress equilibrium and a strain
energy density minimization process for the homogenized medium. Specifically, the homo
genized continuum must be in local equilibrium such that aij,1 = 0 in the absence of body
forces. Moreover, the strain energy density ¢ of the homogenized continuum should attain
a minimum with respect to the micromorphic functions 9, and 92 such that O¢/09i = 0 for
all x, y E R. Thus, for plane strain conditions and in the absence of body forces, local
equilibrium and strain energy minimization yield the following governing equations:

(C II )u.xx + «C I 2) + (C66) )t.XI + (C6 6)a'T + (CII ) 191.x + (C 66 ) 192.1 = 0

(C66 )vu + (C I2) + (C66) )u.X \ + (Cn )V.xx + (C I2) 191.y + (C66 ),92.x = 0

(c I I ) I a \+ (c12) I V y + (c I I ) , 191 = 0

(C 66 )IV,+(C 6 6),U.y +(C66)1192 = O. (13)

The non-standard formulation of the elasticity problem for heterogeneous periodic layered
systems is formally completed via eqns (1 )-(13). The boundary conditions associated with
the above governing equations can be imposed either in terms of displacements or traction.
By further eliminating the micromorphic parameters 9;(X, y) from eqns (13), we obtain the
governing equations for the homogenized domain in terms of macro displacements and
homogenized elastic constants, Cij' as follows:

where

CI , au +(CI2 + C66 )iJ." + C 66 U. 1T = 0

C66 V,u+(C I2 +C6du.x\+Cn V,lT = 0 (14)

(15)

The above quantities CiJ (i,j = 1,2 and 6) with C I6 = C26 = 0 are essentially the components
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of the symmetric stiffness matrix for the homogenized continuum for which the constitutive
relations of the form O"i = CA (i,j = 1,2,6) apply. It is to be noted here that although (C,)I
and <Cij)11 are dependent on (bj{) as given by eqn (II), C; are independent of (bj{).

3.3. The micro mechanical fields
For a given set of boundary conditions, the governing eqns (14) can be solved for the

macro-displacement field ii = {a, vV. The near-tip elasticity solutions for homogeneous
orthotropic cracked bodies have been obtained by Sih et al. (1965) and Kaczynski and
Matysiak (1989). The solution by Sih et al. is presented in the Appendix with minor
modifications. As discussed during the formulation of the non-standard elasticity problem
for heterogeneous systems, the near-tip homogeneous orthotropic solution can be used to
represent the macro-displacements a, v for the heterogeneous region shown in Fig. 3. In
doing so, the compliance matrix [bilJ (i,j = 1,2,6) used by Sih et al. is taken as the inverse
of the effective elastic stiffness matrix [CJ developed in eqn (15) for the homogenized
domain. Thus, the micro-displacement field can be obtained at any point of the solution
domain with the aid of eqns (1)-(2), (4) and (13). Thus, the micro-displacements in the
heterogeneous medium take the following form:

(16)

in the matrix phase and

(17)

in the fiber phase where ai, a2 and a3 are material constants which depend on the elastic
mismatch in the unit-cell. These constants for the bimaterial system under consideration
are given by:

x
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Fig. 3. The plane strain boundary value problem used for the near-tip finite element studies.
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C7'2 - c{2

C7'1 C{ I-+-
Vrn Vi

The elastic micro-strains at every point in the heterogeneous solution domain can be now
obtained with the aid of eqn (5). However, the terms containing the products of the
shape function with the derivatives of micromorphic parameters gt(x, y) in eqn (5) are
comparatively small and can be neglected. It is worth mentioning here that whereas the
presence of these terms improves the accuracy of (In' it introduces small but non admissible
traction discontinuities at the interfaces. Using eqn (5) and after neglecting terms containing
derivatives of g;(x,y), the expressions for the non-zero strains in the matrix phase are
obtained as:

,,(n~) = (1- a3 )(u+V)rX) L'm.) ..\

whereas in the fiber phase they are given by:

,,(!) - (1 + a3 )(U- +F )
I.H' -.. .1' c..-,x·

. VI

(18)

(19)

The micro-stresses in a particular layer of the solution domain can be obtained through the
following local stress-strain relations:

(20)

where the superscript n in parentheses designates the layer within which the equations are
applied, As before, in the above equations summation over the designated range of 1, 2
and 6 is implied by the repeated index j. After combining eqns (18), (19) and (20), the
micro-mechanical stresses take the following form:

(21)

Clearly, we notice that the stress components (l~~l and (l~~) depend only on the homogenized
stiffnesses and they are, in fact, identical to the homogeneous orthotropic stresses axx and
ax)' This result automatically enforces traction continuity along all matrix/fiber interfaces,
For the crack-tip fields in the periodically layered systems, the macro displacements 17, v
and their derivatives in eqns (16)-(21) are taken to be those obtained by Sih et at. (1965).
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4. NEAR-TIP FINITE ELEMENT MODEL

The near-tip boundary value problem is shown in Fig. 3, which represents the cut-out
region (see Fig. 1) surrounding the physical crack-tip of a macroscopic mode-I crack
embedded at 90-degree to the interfaces of a laminate compact tension, centered crack plate
or even a double cantilever beam specimen. The boundary of the cut-out domain shown in
Fig. 3, is assumed to be within the region dominated by the homogeneous orthotropic stress
intensity factor, K~. This clearly requires that the dimension R of the cut-out region is both
sufficiently larger than the characteristic microstructural length and also sufficiently smaller
than a characteristic macroscopic specimen dimension such as the crack length or specimen
height or uncracked ligament size. As shown in Fig. 3, the physical dimensions of the near
tip region were taken to be 2R x 2R. The near-tip solution domain comprises of alternating
layers of the matrix and the fiber consistent with the lamination morphology used in the
development of the analytical approximate model. While the crack surfaces were considered
traction free, symmetry boundary conditions consistent with mode-I loading, namely zero
displacement in the y-direction and zero force in the x-direction, were imposed at all nodes
ahead of the crack-tip. The asymptotic mode-I homogeneous orthotropic displacements
were imposed on the remaining part of the boundary. This displacement field, which is
characterized by the remote orthotropic stress intensity factor K~, has the following form:

{u} = 0 r;- {vee, hi.'.')}
v K j ~ 2n Re vee, b,i) ,

(22)

where rand e are the polar coordinates as shown in Fig. 3, bi) are compliancies of the
homogeneous orthotropic medium, and V and V are the spatial complex eigen-functions
obtained by solving the near-tip mode-I asymptotic problem for a homogeneous orthotropic
medium. The explicit forms for V and V are given in the Appendix.

The layered cut-out region was discretized using sufficient number of eight-noded
isoparametric elements as needed to capture high stress gradient fields. A typical finite
element mesh used in this study is shown in Fig. 4. In order to investigate the effects of dual
length ratio R/I [Ballarini et al. (1995)] and the crack-tip location with respect to the
matrix/fiber interface, various meshes were constructed using an automated mesh generator
for the layered systems. In all cases, a focused mesh was used in the immediate vicinity of
the crack-tip which was surrounded by a rosette of singular quarter point elements to
capture the expected square root singular stresses. The near-tip finite element solutions
were obtained using the in-house finite element software DENDRO and the commercially
available finite element package ABAQUS. A full integration scheme was used in the
integration of the element stiffnesses.

5. RESULTS

In this section, the near-tip field quantities predicted by the analytical approximate
model and those obtained numerically via the method of finite elements are presented. The
model and finite element predictions are compared with each other and with the known
near-tip analytical solution for isotropic and homogeneous orthotropic media. As discussed
earlier in this work, overall plane strain conditions were considered. Thus, it was assumed
that the out-of-plane thickness of the layered system was sufficiently large compared to a
specimen characteristic length such that the conditions of plane strain prevailed in the
interior away from the lateral traction free surfaces.

The results presented in this section were obtained for a bimaterial layered system
comprised of alternating isotropic elastic layers. As mentioned earlier, the softer material
is referred to as the matrix phase and the stiffer material is referred to as the fiber phase.
Results were obtained for various moduli ratios ;. = EdEm and fiber volume fractions vf,
where subscripts f and m represent properties for the fiber and the matrix phases, respec
tively. In all cases, the Poisson's ratio for each layer was taken to be VI = Vm = 0.3. Without
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Fig. 4. (a) A finite element mesh used in solving the near-tip boundary value problem shown in
Fig. 3. (b) Details of the focused near-tip mesh.

loss of generality, most of the results presented in this paper correspond to i. = 10 and fiber
volume fraction 1'r = 0.5. In order to investigate the effects of the actual number of layers
in the laminate on the near-tip mechanics. systems with dual length ratios R/l = 5, 10,25
and 50 were considered. The stresses are normalized with the reference stress
(f" = K~/J2nR, while the displacements are normalized with the reference displacement
U" = K~/Eo.JR/2n. and the spatial distance is normalized with a reference length R. As
before, K7 represents the homogeneous orthotropic mode-I stress intensity factor and E" is
the reference modulus which for this study is taken to be the matrix modulus E,n-

5.1. Near-tip displacements
The radial variation of the normalized displacements at an angular position e= 45°

are shown in Fig. 5(a). The displacement components as obtained by finite element analysis
were found to oscillate around the corresponding homogeneous orthotropic displacements.
The approximate analytical model predicted the displacement field quite accurately
throughout the solution domain with some deviations observed within the first unit-cell
from the crack-tip. The angular variation of the normalized displacements at a radial
distance r/R = 0.8 is shown in Fig. 5(b). It is observed that the proposed model is capable
of capturing the displacement field fairly well over the entire angular region.

5.2. Normal stress ahead ot" the crack-tip
Profiles for the normalized (f" acting on the plane ahead of the crack-tip are shown in

Fig. 6. The results are plotted on a log-log scale such that the slope of the stress profile
indicates the strength of the dominant singularity. Results for systems of dual length ratios
R!l = 5, 10,25 and 50 are reported in Fig. 6(a)-(d). For comparison purposes, the analytical
homogeneous orthotropic stress predictions are also presented. In the above figures, the
heavy solid line represents the homogeneous orthotropic singular stress, the thin continuous



Fig. 5. (a) Radial variations of displacements at an angle (J = 45 . (b) Angular variations of
displacements at a distance r = O.8R from the crack-tip.

line represents the approximate model prediction while the dotted line represents the finite
element results. The unit-cell average results were obtained by integrating the finite element
microstresses across a fiber/matrix unit-cell and dividing by the length of the unit-cell
consistent with Ballarini et al. (1995). As expected, for all systems considered, the stress
profiles are discontinuous at the fiber/matrix interfaces due to the elastic modulus mismatch
between the two material phases and the stress in the compliant matrix phase is consistently
lower compared to that in the stiffer fiber phase. Again for all systems considered, the stress
in the immediate vicinity of the crack-tip exhibits an ,-1 2 variation almost up to the first
interface ahead of the crack-tip. In the subsequent fiber and matrix layers, the local micro
stress distribution appears to deviate from the ,'! 2 dependency mainly due to the effects
of strong material heterogeneity. However, the overall stress pattern in the matrix as well
as in the fiber phases seems to be confined within an ,-12 singular envelope which is
nicely captured by the analytical approximate model. This observation suggests that the
microstress 0'1" in the fiber and the matrix phases is dominated by the orthotropic stress
intensity factor and a discontinuous spatial eigen-function which accounts for the observed
stress discontinuities. As shown in Fig. 5, the near-tip heterogeneous stresses predicted by
the approximate analytical model match very closely with the finite element solution. It is
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to be noted here that the r I 2 stress singularity of the model results from the homogeneous
orthotropic near-tip displacement field which inherently contains this feature.

5.3. Angular micro-stress profiles
The angular variations of the normalized micro-stress components (J ,j(Jo, (J,r!(Jo and

(Ju/uo at a normalized radial distance r/R = 0.00 I as a function of angular position eare
presented in figure columns 7(a) through 7(c). Since this region falls entirely within the
matrix phase surrounding the physical crack-tip. the isotropic singular solution is also
plotted. The tip stress intensity factor K~iP = O.4K~ was obtained by matching the analytical
isotropic stress (In(x, 0) at the crack-tip with that obtained by the finite element calculations.
It was found that the stress field in the immediate vicinity of the crack-tip exhibits almost
isotropic behavior. Through separate studies [Jha et al. (1995)] it has been shown that the
tip stress intensity factor KYp is strongly dependent on the crack-tip location with respect
to the adjacent matrix/fiber interfaces. As shown in Fig. 7(a)-(c). in high dual length ratio
systems, i.e .. R/I = 25 [see Fig. 7(c)], the values of (J" appear to deviate slightly from their
equivalent isotropic results. This deviation is to be expected since the region dominated by
the isotropic field diminishes with increasing dual length ratio RjI. The results reported in
Fig. 7 are obtained at a fixed distance r/ R = 0.001 from the crack-tip and as such, the slight
deviation shown by the (J,,-component in 7(c) may reflect the effects of the diminishing
isotropic zone with R/I.

The angular variation of the normalized micro-stress components uxx!(Jo. (In!(Jo and
un/(Jo at a normalized radial distance r/ R = 0.8 are shown in figure columns 8(a) through
8(c). While the stress field dominating the matrix material in the immediate vicinity of the
crack-tip was found to be consistent with the isotropic fields and exhibited sensitivity to
the location of the physical crack-tip, the stresses away from the crack-tip at radial distances
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beyond one unit-cell thickness, were found to be unaffected by the actual tip location
relative to the adjacent matrix/fiber interfaces. Consistent with the heterogeneous micro
structure. CTn is found to be discontinuous at the matrix/fiber interfaces. While the con
tinuous stress components (In and (J" are shown to be in good agreement with their
orthotropic counterparts. the discontinuous stress (J" is found to oscillate around the
homogeneous orthotropic solution. This oscillation of (JIT arising from the material hetero
geneities is very nicely captured by different eigen-functions associated with the matrix and
the fiber phases. For all systems considered. the predictions of the approximate analytical
model were found to be in a remarkable agreement with the finite element solutions. This
enforces confidence in the approximate model which can be used to extract additional
information regarding the structure of the micro-stress fields and their implications on
mode-I fracture in layered systems.

5.4. Radial profiles o((J" stress
The stress profiles along several radii emanating from the physical crack-tip are shown

in Fig. 9. As before, the results presented here are those for a layered system with moduli
ratio i. = 10. VI = 1'/11 = 0.3, fiber volume fraction 1"/ = 0.5 and dual length ratio R/I = 10.
The results shown in Fig. 9 correspond to radii at angular positions e= 0, 30. 45, 60, 120
and 135 degrees, respectively. The discontinuities in (In are consistent with the matrix/fiber
interface locations. As evident from the above results and the results shown in Fig. 7, the
oscillating characteristic of (JII is found due to the presence of a discontinuous spatial eigen
function that describes (JI' in bimateriallayered systems. As shown, the approximate model
is in remarkable agreement with the finite element results.
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6. DISCUSSIONS
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The results reported in Figs 6-9 provide meaningful insights on the mode-I near-tip
mechanics in layered systems. The results of this investigation suggest that the near-tip
region in layered systems is dominated by three distinct stress fields. More specifically, the
stress fields in the matrix region surrounding the crack-tip appear to be those obtained for
isotropic systems. On the other hand, the stress fields in the outer near-tip annulus domain
appear to be the part of an overall r- I

2 singular field dominated by the orthotropic stress
intensity factor. The inner and the outer K-dominated fields are linked through a narrow
transition zone, the extent of which appears to be limited to approximately one fiber/matrix
unit-cell length. The elastic fields in these three regions and their implications on fracture
are discussed in the following subsections.

6.1. Elastic fields in the innermost region!
As discussed by Charalambides (1991) and Ballarini et al. (1995), the extent of the

innermost zone is limited by a characteristic micro-length such as the spacing b between
the crack-tip and the first matrix/fiber interface as shown in Fig. 10. This study suggests
that material points within region-! bounded by a radius r l ~ (0.0 I - 0.1 )lm are dominated
by the isotropic asymptotic K-field the structure of which is not affected by the hetero
geneous micro-structure. While the spatial variation of the elastic fields in region-! is shown
to be that of the isotropic fields, the dominant stress intensity factor K~iP is found to depend
on the heterogeneous micro-structure of the layered system. This dependency was first
reported by Ballarini et al. (1995) and it has been verified through the present studies. While
Ballarini et al. (1995) reported numerically obtained discrete values of the relationship
between K~P and the remotely applied K~, the analytical approximate model developed in
the present study can be used to establish this relationship. As observed in Fig. 6, (J II

appears to be dominated by the same stress intensity factor in the matrix region-! as well
as in all other matrix layers. This observation has very strong implications as the tip stress
intensity factor K~'P, at least for the geometry under consideration, can be defined as:

K"P = lim !lTT.rO'''' (r 0)
I r---->O "'v - .IT' .

(23)

In isotropic bimaterial layered systems, the expression for (J7~ given in eqn (21) can be
rewritten in the reduced form:

(24)

Here, Vmand Em represent the Poisson's ratio and the elastic modulus of the matrix material

Mode I
crack

Fig. 10. A schematic representation of the small singular region I surrounding the crack-tip in
bimateriallayered systems.
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respectively. The model prediction for the continuous stress component (1" is identical to
that predicted by the homogeneous orthotropic solution. so it can be replaced by the first
equation of (A.3) in the Appendix. Similarly. the average strain i:V\ can also be expressed
in terms of the homogeneous orthotropic stress intensity factor. With the above sub
stitutions and further simplification. the tip stress intensity factor can be obtained with the
aid of eqn (23) as:

(25)

where r[ is a non-dimensional function which depends implicitly on material constants ?.
Vm • vIand the fiber volume fraction viand is obtained as the real part of a complex function
of the above properties as follows:

(26)

In eqn (26) /1" /12 are the roots of the characteristic eqn (A,5) given in the Appendix and
qj. q2 are those defined by eqn (A.6).

The effects of the moduli ratio i. and the fiber volume fraction vt on the tip stress
intensity factor K1P are shown in Fig. 11. In Fig. 11 (a), the normalized tip stress intensity
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factor is plotted against the moduli ratio Ie for various fiber volume fractions vI' The above
results were obtained assuming that the crack-tip was located in the middle of the matrix
phase. The discrete points in the above figure represent finite element predictions for a
system wherein vr = 0.5. It is observed from Fig. II (a) that by increasing the fiber volume
fraction, higher shielding effects are produced for Ie > 1 while amplification takes place for
Ie < 1. It is interesting to note that the rate of increase of amplification with respect to the
fiber volume fraction is higher compared to the rate at which shielding increases. For ), > 1,
we find a remarkable agreement between the model prediction and the numerical results.
The tip stress intensity factor against fiber volume fraction is shown in Fig. 11 (b). The
model predictions are reported for). = 0.1, 0.2 ... 10 while the finite element results in Fig.
11 (b) correspond to ). = 10. A good agreement is found between the model and the finite
element results over the full range of fiber volume fraction.

6.2. Elastic fields in the outermost region III
As discussed above, the isotropic stress intensity factor K~iP given by eqn (25), domi

nates the elastic fields in region-I shown in Fig. 10. While the above finding applies to a
relatively very small region surrounding the crack-tip (see Fig. 10), the stresses at radial
distances greater than a fiber/matrix unit cell length have been shown to be dominated by
the applied orthotropic stress intensity factor K~. The stress components (J\X and (JX) in
region-Ill are continuous and are found to be in good agreement with their homogeneous
orthotropic counterpart. The (JlT is described by a discontinuous spatial eigen-function
which accounts for the observed discontinuities. As demonstrated earlier in this study, the
above behavior is captured by the analytical approximate model. With the aid of the
approximate model, it can be shown that the continuous stress components in region-III
are given by :

(27)

(28)

where Fu (-) and F,y(-) are eigen-functions identical to those reported in the Appendix
for the homogeneous orthotropic problem. Similarly, the discontinuous stress (In can be
expressed as :

(29)

where Fn .(-) is a piece-wise continuous spatial eigen-function which exhibits discontinuities
at all matrix/fiber interfaces. For plane strain, the explicit form of the discontinuous eigen
function for layer type} is given by:

(30)

Obviously, F~l changes with the change in material phase and eigen-functions for the matrix
and fiber phases are obtained by allowing the index} to become either m for the matrix or
ffor the fiber phases in the above equation. Thus, the stress and deformation fields in the
outermost region-III, can be fully described via the orthotropic stress intensity factor K~

and the spatially discontinuous eigen-function F n (-).
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6.3. Elasticfields in the transition region II
While the approximate analytical model does not allow for an intermediate transition

stress fields, the refined finite element results support the existence of this region. As an
evidence to this fact, the normalized (Jxx stress component ahead of the crack-tip has been
plotted against the normalized distance on a 10g~log scale in Fig. 12. It is noticed that the
isotropic field dominating the matrix region in the immediate vicinity of the crack-tip (see
Fig. 10) changes very rapidly to the field dominating the outermost annular region. As
shown by this study and the study by Ballarini et al. (1995) the transition from region-I to
region-III takes place within the first fiber/matrix unit cell and appears to be slightly
dependent on the dual length ratio. As discussed earlier in this work, it has been shown
through complementary studies [Jha et al. (1995)] that the stress intensity factor dominating
the near-tip fields in matrix region-I is sensitive to the crack-tip location relative to its
adjacent matrix/fiber interfaces. The same complementary studies suggest that the remote
stress fields in region-Ill are not affected by the actual crack-tip location within the matrix
phase. As a result of the above observations, it is expected that the profiles of the elastic
transition fields will depend on the actual crack-tip location within the matrix phase whereas
the extent of the transition zone will be minimally affected by the actual crack-tip location.

6.4. Implications on fracture
As shown by this and other studies [Ballarini et al. (1995) and Fish et al. (1993)], a

rather complex stress pattern exists in the crack-tip region of layered systems containing a
crack oriented at 90-degree to the main layer direction. This stress pattern has direct
implications on the process of mode-I fracture in layered brittle systems. As discussed
earlier in this work, the elastic stresses in the matrix region-I in the immediate vicinity of
the crack-tip (see Fig. 10) are dominated by the tip stress intensity factor K1P given by eqns
(25) and (26). Thus, the elastic energy release made available for brittle fracture of the
matrix material in the crack-tip region is obtained via Irwin's relation as follows:

(31 )

By replacing K~jp in the above equation with its equivalent given by eqn (25), ~? takes the
following form :
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(32)

While the above equation predicts the near-tip energy release rate associated with the fields
dominating the matrix material in region-I (see Fig. 10), for the same loading and specimen
geometry (i.e., same KD different amounts of energy release rate are made available for
composite fracture. Here, composite fracture implies that crack growth initiation as pre
dicted through a Griffith failure criterion extends at least a matrix/fiber unit-cell. Such an
event can be predicted by comparing the energy release rate estimated for the homogenized
orthotropic medium ':§~, to an effective composite toughness ':§b As discussed by Sih et al.
(1965), for given K~, the associated energy release rate ':§~ is given by

(33)

where hi) = [Cul- I (i,j = 1,2,6) represents the effective orthotropic elastic compliancies of
the homogenized medium. The above equation can be rewritten as follows:

(34)

where Am is a nondimensional function and Em and Vm are the Young's modulus and
Poisson's ratio of the matrix material respectively. Under ideally brittle fracture conditions,
fracture of the layered system may occur as a result of two possible failure events. In one
possible failure event, crack growth initiation may first occur within the matrix region
surrounding the crack-tip (see region-I in Fig. 10) while the fiber layers remain intact. In
accordance with this failure scenario, crack extension entirely within the matrix may then
follow the initiation of crack growth potentially leading to multiple matrix cracking with
the bridging fibers still resisting catastrophic composite failure. Under increased applied
loads, other events such as fiber layer debonding, fiber failure and fiber pull-out may
precede the ultimate composite failure. While the above fracture processes may occur as a
result of the initiation of matrix cracking prior to fiber failure, a second scenario exists
wherein fiber failure may occur prior to matrix cracking initiation. Under this failure event,
although the energy release rate made available to the matrix region-I at the crack-tip may
not exceed the toughness of the matrix material for crack growth initiation, individual
fibers ahead of the crack-tip may start failing. Such initial fiber failures may induce sec
ondary failure events emanating at either the tips of the newly nucleated fiber cracks or at
the tip of the major crack in the matrix region or at both tips simultaneously. In any case,
when fiber failure occurs first, failure in the lower toughness matrix material becomes
inevitable leading to brittle fracture of the entire composite. The exact order in which the
above two failure events may occur can be assessed by applying Griffith's fracture energy
criterion at the tip of the main crack as required to assess matrix failure while maintaining
a below critical energy release rate for the homogenized composite. Thus, matrix failure
prior to composite failure is predicted if:

(35)

where ':§'}'C and ':§~c are the apparent fracture toughnesses of the matrix phase and the
homogenized layered composite respectively, and ,:§yP and ':§~ are the respective energy
release rates made available for the creation of new surfaces in the matrix region-I only and
the broader homogenized tip region respectively. By dividing the above equations by parts,
the following inequality for matrix failure over composite catastrophic fracture is obtained:



M. Jha el al.1868

2.0

1.8

1.6

~
1.4

(I) 1.2
1Il
III
(I)

1.0
~
>-
e> 0.8
(I)
c:w 0.6

0.4

0.2

0.0

Composite fracture...

r.' /r;m= [~ /
"qc"qc 4 ----------l

5 -----...-.J

JMatrix cracking i

l>------J~~ only .I

<t/«' /(::...•/
~.-..-..-..-..-.;......

cro 0.2 0.4"lJ 0.6 0.8

Fiber volume fraction ( v.r)
Fig. 13. Elastic energy release rate vs fiber volume fraction as predicted by the approximate analytical

model for i = 10.

'!f?
?

~i};~
(36)

~Ij~ cl1 11

iff(

In order to explore the above finding further, we shall consider an example system as
follows. Let ;. = 10 and '!fic = 3'!f7~ where ~47~ is the mode-I toughness of the matrix phase
and '!fIc is that of the fiber. During composite fracture, the new fracture surfaces generated
can be multiplied by the respective matrix and fiber fracture energies to obtain the apparent
composite toughness '!f7c such that:

(37)

where vris the fiber volume fraction. By combining eqns (36) and (37) we obtain:

(38)

For the system considered in this example. and after evaluating '!f? and '!f7 through eqns
(32) and (34) respectively, the left and right hand side of eqn (38) can be independently
plotted a shown in Fig. 13. For the example system under consideration the two curves
intersect at a critical fiber volume fraction vI' = 0.47. Clearly, in this example, for systems
with fiber volume fraction L"jless than the critical value t)' = 0.47 defined by the intersection
of the two curves, the energy made available for composite failure exceeds the apparent
composite toughness while the energy made available for matrix cracking remains below
the critical value for matrix crack growth initiation. Therefore, when 1"1 < t·;' and as indi
cated in Fig. 13, composite failure is predicted to occur prior to matrix cracking. On the
other hand, when t'r> vi' then matrix cracking consistent with the first fracture event
discussed earlier in this section is predicted to take place prior to composite failure. This
may also suggest that as '!fIc/~47~· increases, critical fiber volume fraction vi' decreases.

Clearly, the above discussion highlights the significance of being able to predict with
sufficient accuracy the discontinuous microstress fields dominating the near-tip region of
cracked layered systems. It is also understood that the actual events dominating fracture in
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such complex systems will be significantly dependent on potential non-linear material
responses such as microcracking damage in ceramics and ductile yielding in metal layers.
Although, realistic fracture models are needed to account for such non-linear events, such
studies are beyond the scope of this work which addressed the linear response and fracture
behavior of cracked layered system under mode-I loading conditions.

7. CONCLUDING REMARKS

The micromorphic elastic fields in the near-tip region of a mode-I crack embedded at
90-degree to the layers in the periodically layered systems have been investigated using an
approximate analytical model and the method of finite elements. The micro mechanical
fields at radial distances greater than a fiber/matrix unit-cell were found to be dominated
by the orthotropic stress intensity factor and a set of eigen-functions which account for the
admissible stress discontinuities. An expression for the stress intensity factor, K~Jp, which
dominates the isotropic field in the matrix region-I surrounding the crack-tip has also been
obtained. More specifically, KYP was found to be related to the orthotropic stress intensity
factor, K~, via a material dependent function. In general, it has been shown that the singular
micro mechanical elastic fields in such layered systems can be constructed from the homo
geneous orthotropic field by introducing an a priori known shape function and certain
unknown micromorphic parameters which take into account the effects of the micro
periodic material structure. The effective elastic constants for the homogenized medium are
easily obtained by the assumed a priori known shape function and they are independent of
both the unit-cell geometry and the amplitude of the shape function. The micro mechanical
elastic fields predicted by the approximate analytical model match very closely with the
finite element solution except in the region very near to the singular point, i.e., the crack
tip.

While the unit cell average stresses match very closely with the analytical homogeneous
orthotropic solution, the actual singular stress fields in the laminated systems cannot be
captured with homogenization. The approximate analytical model presented in this paper
can be effectively utilized to predict the micro mechanical fields with sufficient accuracy in
these periodically layered systems. The model can also be used to assess fracture initiation
in brittle layered systems.
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APPENDIX

Near-tip fields in homogeneous orthotropic marerials
For an anisotropic material, the generalized Hooke's law is given by

(A.I)

where [5,;] = [5,,] is the compliance matrix for the material. When the material has a plane of elastic symmetry
normal to z-axis, the Hooke's law for the deformation in the (x,r) plane [Lekhnitskii (1963)] reduces to

where

h" =

"i = b,p, i,j = L 2, 6

for plane stress

for plane strain

(A.2)

For the Mode-I loading considered in this paper. the stress and the displacement fields in the neighborhood of
the crack-tip are given by [Sih et al. (1965)]

- _~R[IlIIl'( 11, III \J
(J\.\ - ,_ e

jcostl+1l1 Sintl)J2rrr III - 11, Vi costl+Il' sinO

K'; [I ( III 112 ) ]all =---=Re --
,,/cos 8 + III sin 8.,j2rrr III - 11, Y COSO+1l2 sinO

K, [111112 (
Jcos 8~ 112 sin 0) ]

(j \\ =---=Re --
.,j 2rrr III - 112 y' cos 0+ III sin 0

- ,,(2; [I . ." . . ]
t' = K{ 1- Re ---(Illq,v cos 0+ 11, Sill 8- Il,ql V cos tiT III Sill 0)

\j 1r 111-11,

(A.3)

(A.4)
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where K; is the Stress Intensity Factor and /1, = "',+ if3, (j = 1.2) are the roots (with III > 0) of the characteristic
equation

and

P, = b, ]/1; +b" ~b16ll:

ql = b"Il,+b"'Il,-b,,.

The partial derivatives of the displacements are given by:

Cl' K; [111112 (' q2 qj)J
i'y = -::21lr Re 11] -/12 v'COsfi+1l2 sinfi - " cosfi+1l1 sinfi .

(A.5)

(A.6)

(A.7)


